Second Use of Electric Vehicle Batteries in Stationary Applications

Presented at

DOE Energy Storage Systems Program Review Arlington, Virginia November 14, 2001

Presented by

Irwin B. Weinstock SENTECH, INC.

Outline

- Background
- Study tasks
- Status
- Future work
- Acknowledgements

Background

Objectives of this Phase I Study

- Evaluate feasibility of using "spent" EV/HEV batteries in stationary applications
- Identify criteria and possible partners for a demonstration project

Objectives of future phases

- Additional laboratory testing
- Field trial/demonstration

Ultimate goals

- Reduce net cost of batteries to EV owner
- Make advanced batteries available for stationary applications

Study tasks

- 1. Gather battery-related information
- 2. Identify opportunities for stationary battery energy storage
- 3. Define the issues in reusing spent EV batteries
- 4. Perform economic analysis for re-use process
- 5. Identify criteria and partners for possible demonstration
- 6. Prepare Final Report

- Is there any experience in reusing batteries?
 - Peer reviewed technical journals
 - Previous studies
 - Personal contacts

Findings

- There is an active secondary market for used batteries
 - Battery chemistries
 - Lead acid most popular
 - Ni-Cd, Ni-Fe, Ni-MH, Lithium ion (?)
 - Applications
 - Renewable energy systems
 - Ham radio systems
 - Laptop computers (?)

- ANL/USABC study (1996-1997)
 - Used Ni-MH batteries from EV test program were evaluated for stationary applications
 - Batteries were tested per USABC test protocol
 - 500 DST cycles to 80% DOD, simulating EV use
 - Evaluated for stationary applications
 - Utility load management
 - Load following
 - Frequency regulation and spinning reserve (UES Cycle)
 - Uninterruptible power systems (UPS)

Findings

Performance competitive with new lead acid batteries

- Battery testing & condition of batteries at EOL
 - Review EV/HEV battery test manuals
 - USABC, PNGV, MATADOR Task 2
 - Visit battery makers and battery test laboratories
 - ANL, SAFT, Ovonic/ECD

Findings

- Testing is expensive but necessary
- Testing after EOL probably at module level
 - Predict future life
 - Sort/match for future reassembly
- Cycling could give data for predicting future life
 - C/3 capacity and internal impedance
 - 3 to 5 cycles may be enough

Auto industry perspectives

Ford, GM, DaimlerChrysler

Findings

- Batteries will be owned by vehicle buyer
- In case of problem dealers will...
 - replace EV modules if before expected EOL
 - replace entire HEV battery
- At EOL dealers will...
 - remove & disassemble EV batteries
 - remove HEV batteries as unit

- Looked at three size categories
 - Utility/industrial
 - Commercial
 - Residential
- Determined energy storage requirements
 - Load characteristics
 - Energy
 - Power
 - Duty cycle

APPLICATION	DISCHARGE TIME	PEAK POWER	AVERAGE POWER	ENERGY DELIVERY	FREQUENCY OF USE
Transmission Stabilization	10 sec (up to 5 pulses)	500 MW	N/A	< 500 MWs/ pulse (140 kWh)	1/month
Area Regulation & Spinning Reserve	12 min?	20 MW	±10 MW	±2MWh	1/15 min
	15 min full power, 15 min ramp down	20 MW	20 MW	7.5 MWh	1/month
Load Leveling / Energy Arbitrage / Transmission Deferral	5-10 hrs	N/A	10 MW/ 15 MVA	100 MWh	100–200 days/yr (weekdays w/high demand)
Renewables Firming	1 hr or 10 hr	5 MW	1 MW	1–10 MWh	10-20 days/month
Power Reliability & Peak Shaving		2 MW	1 MW	3–4 MWh	6 <i>l</i> yr
	3-4 hrs				1/day, max.
Light Commercial Load Following	3 hr at average power, overnight at low power	200 kW	25 kW ?	75–100 kWh	1 high DOD cyde/day, many low DOD subcycles
Residential Load Following	3 hr at average power, overnight at low power	10 kW	1 kW	3–4 kWh	1 high DOD cyde/day, many low DOD subcycle
Distributed-Node Telecomm Standby Power	5-10 hrs	5 kW	< 5 kW	25–50 kWh	2 <i>l</i> yr

• Utility/Industrial applications

- Utility load leveling/ energy arbitrage (100,000 kWh)
 - Extremely large system
- Renewables firming (1,000–10,000 kWh)
 - Frequent, low rate (C/5) discharges
- Area regulation & Spinning reserve (5,000–7,500 kWh)
 - Infrequent, high rate (C/2 C) discharges
- Power reliability/Peak shaving (3,000–4,000 kWh)
 - Power reliability: infrequent, moderate rate (~C/2) discharges
 - Peak shaving: daily, moderate to high rate (C/2 C) discharges
- Transmission stabilization (140 kWh)
 - 500,000 kW second pulses
 - 5 pulses/10 seconds, once/month

Commercial applications

- Peak shaving (3,000–4,000 kWh)
 - Daily, moderate to high rate (C/2 C) discharges
- Customer-side load following (75–100 kWh)
 - 1 deep discharge and several shallow discharges per day
 - C/3 discharge rate typical
- Distributed node telecommunications
 - Standby power
 - Infrequent, low rate (C/5) discharges

Residential applications

- Renewable systems (up to 25 kWh for off-grid)
 - Daily, moderately deep (>50% DOD) discharges
- Self-generation load following (3–4 kWh)
 - 1 deep discharge and several shallow discharges per day
 - C/3 discharge rate typical

Current activities

- Finishing data gathering
 - Lead-acid batteries
 - Batteries used in heavy hybrids
- Setting-up framework for economic analysis
 - Production systems
 - When EVs/EHVs are common
 - Demonstration
 - Near term

Remaining tasks

- Complete economic analysis
 - Executive-level
- Recommendations for follow-on phases
 - Identify need for additional laboratory testing
 - Identify possible demonstration projects
 - Criteria
 - Partners
- Prepare Final Report
 - Draft by December 31, 2001
 - Final by January 31, 2001

Acknowledgements

Sandia National Laboratory

Technical Contact Rudolph Jungst

• Study team

- Erin Cready
- John Lippert
- Josh Pihl
- Phil Symons
- Irwin Weinstock

